MA 214
3/27/2023
Quiz 5
Version A

Full name: \qquad

Student ID number: 9 \qquad

1. Use the table of Laplace transforms to take the Laplace transform of both sides of this IVP, letting $\mathcal{L}\{y\}=Y$. Then solve for Y. Be sure to use the given initial conditions. You do not need to find the inverse Laplace transform of Y once you've solved for it.

$$
\begin{aligned}
& \mathscr{L}\left\{2 y^{\prime \prime}+y^{\prime}+y=e^{3 t}, \quad y(0)=3, \quad y^{\prime}(0)=1\right. \\
& \Rightarrow 2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+\mathcal{L}\left\{e^{3 t}\right\} \\
& \Rightarrow 2\left(s^{2} y(s)-s y(0)-y^{\prime}(0)\right)+(s Y(s)-y(0))+y(s)=\frac{1}{s-3} \\
& \Rightarrow 2\left(s^{2} y(s)-3 s-1\right)+(s y(s)-3)+Y(s)=\frac{1}{s-3} \\
& \Rightarrow 2 s^{2} y(s)-6 s-2+s y(s)-3+Y(s)=\frac{1}{s-3} \\
& \Rightarrow\left(2 s^{2}+s+1\right) Y(s)=\frac{1}{s-3}+6 s+5 \Rightarrow y(s)=\frac{1}{s-3}+6 s+5 \\
& 2 s^{2}+s+1
\end{aligned}
$$

2. Determine the inverse Laplace transform of the function using the table of Laplace transforms.

$$
\begin{aligned}
& F(s)=\frac{2}{s^{2}}+\frac{3 s}{s^{2}+10}+\frac{2}{s+5} \\
& f(t)=q-1\{F\}(t)=q-1\left\{\frac{2}{s^{2}}+\frac{3 s}{s^{2}+10}+\frac{2}{s+5}\right\}(t) \\
& =2 \mathscr{L}-1\left\{\frac{1}{s^{2}}\right\}+3 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+10}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{s+5}\right\} \\
& =2 t+3 \cos (\sqrt{10} t)+2 e^{-5 t}
\end{aligned}
$$

3. Write an equation for the following function, using Heaviside notation. (You may use either $u(t)$ or $h(t)$ to represent the Heaviside function.)

$$
\begin{aligned}
f(t) & =3\left(u_{2}(t)-u_{4}(t)\right)+1 \cdot u_{4}(t) \\
& =3 u_{2}(t)-3 u_{4}(t)+u_{4}(t)=3 u_{2}(t)-21 u_{4}(t)
\end{aligned}
$$

4. Use the integral definition of the Laplace transform to determine the Laplace transform of $f(t)=t$. You must show every step of your work.

$$
\mathcal{L}\{t\}(5)=\int_{0}^{\infty} e^{-s t} t d t=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s t} d t
$$

Integration by parts: $\int_{0}^{\infty} u d v=\left.u v\right|_{0} ^{\infty}-\int_{0}^{\infty} v d u$
Let $u=t \Rightarrow \frac{d u}{d t}=1 \Rightarrow d u=d t$

$$
\begin{aligned}
& d v=e^{-s t} d t \Rightarrow \frac{d v}{d t}=e^{-s t} \Rightarrow v=\frac{e^{-s t}}{-s} \\
& \int_{0}^{\infty} e^{-s t} t d t=\int_{0}^{\infty} u d v=\left.u v\right|_{t=0} ^{\infty}-\int_{0}^{\infty} v d u \\
&=-\left.t \frac{e^{-s t}}{s}\right|_{t=0} ^{\infty}-\int_{0}^{\infty}-\frac{e^{-s t}}{s} d t \\
&=\lim _{N \rightarrow \infty}\left[-\left.t \cdot \frac{e^{-s t}}{s}\right|_{t=0} ^{N}+\frac{1}{s} \int_{0}^{N} e^{-s t} d t\right]
\end{aligned}
$$

$$
=\lim _{N \rightarrow \infty}\left[-\left(\frac{N}{e^{s N}} \cdot \frac{1}{s}-\frac{0 \cdot e^{0}}{s}\right)+\left.\frac{1}{s} \cdot \frac{e^{-s t}}{-s}\right|_{0} ^{N}\right]
$$

Note: $\lim _{N \rightarrow \infty} \frac{N}{e^{S N}}=0$ for $s>0$ since $e^{S N}$ growths

$$
\begin{aligned}
& \text { faster than } N . \\
& =\lim _{N \rightarrow \infty}-\frac{1}{s^{2}}\left[e^{-s N}-e^{0}\right]=\lim _{N \rightarrow \infty} \frac{1}{s^{2}} \cdot\left[1-\not e^{s N}\right] \\
& b / c \lim _{N \rightarrow \infty} e^{-5 N}=0 \text { for } s>0 .
\end{aligned}
$$

Thus, $\mathscr{L}\{t\}=\frac{1}{s^{2}}$
See the table for any $n=1,2,3, \ldots$

$$
\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}}
$$

For $n=1: \mathcal{L}\{t\}=\frac{1!}{s^{1+1}}=\frac{1}{s^{2}}$

